Tracking of Abrupt Motion Using Wang-Landau Monte Carlo Estimation

نویسندگان

  • Junseok Kwon
  • Kyoung Mu Lee
چکیده

We propose a novel tracking algorithm based on the WangLandau Monte Carlo sampling method which efficiently deals with the abrupt motions. Abrupt motions could cause conventional tracking methods to fail since they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau algorithm that has been recently proposed in statistical physics, and integrate this algorithm into the Markov Chain Monte Carlo based tracking method. Our tracking method alleviates the motion smoothness constraint utilizing both the likelihood term and the density of states term, which is estimated by the Wang-Landau algorithm. The likelihood term helps to improve the accuracy in tracking smooth motions, while the density of states term captures abrupt motions robustly. Experimental results reveal that our approach efficiently samples the object’s states even in a whole state space without loss of time. Therefore, it tracks the object of which motion is drastically changing, accurately and robustly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abrupt motion tracking via nearest neighbor field driven stochastic sampling

Stochastic sampling based trackers have shown good performance for abrupt motion tracking so that they have gained popularity in recent years. However, conventional methods tend to use a two-stage sampling paradigm, in which the search space needs to be uniformly explored with an inefficient preliminary sampling phase. In this paper, we propose a novel sampling-based method in the Bayesian filt...

متن کامل

Stochastic Filtering for Motion Trajectory in Image Sequences Using a Monte Carlo Filter with Estimation of Hyper-Parameters

False matching due to errors in feature extraction and changes in illumination between frames may occur in feature tracking in image sequences. False matching leads to outliers in feature motion trajectory. One way of reducing the effect of outliers is stochastic filtering using a state space model for motion trajectory. Hyper-parameters in the state space model, e.g., variances of noise distri...

متن کامل

Monte Carlo simulation of joint density of states in one-dimensional Lebwohl-Lasher model using Wang-Landau algorithm

Monte Carlo simulation using the Wang-Landau algorithm has been performed in an one-dimensional Lebwohl-Lasher model. Both one-dimensional and two-dimensional random walks have been carried out. The results are compared with the exact results which are available for this model. PACS: 61.30.-v, 64.70.Md

متن کامل

A generic approach to simultaneous tracking and verification in video

In this paper, a generic approach to simultaneous tracking and verification in video data is presented. The approach is based on posterior density estimation using sequential Monte Carlo methods. Visual tracking, which is in essence a temporal correspondence problem, is solved through probability density propagation, with the density being defined over a proper state space characterizing the ob...

متن کامل

A Generalized Wang–Landau Algorithm for Monte Carlo Computation

Inference for a complex system with a rough energy landscape is a central topic in Monte Carlo computation. Motivated by the successes of the Wang–Landau algorithm in discrete systems, we generalize the algorithm to continuous systems. The generalized algorithm has some features that conventional Monte Carlo algorithms do not have. First, it provides a new method for Monte Carlo integration bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008